Efficacy of Covidien AMD Antimicrobial Dressings Against MRSA and VRE

Chirag B. Shah, Ph.D. (Manager, Bioscience R&D, Covidien, Mansfield, MA)
Ellen Swogger and Garth James, Ph.D. (CBE, Montana State University, Bozeman, MT)
Efficacy of Covidien AMD Antimicrobial Dressings Against MRSA and VRE
Chirag B. Shah, Ph.D. (Manager, Bioscience R&D, Covidien, Mansfield, MA)
Ellen Swogger and Garth James, Ph.D. (CBE, Montana State University, Bozeman, MT)

SUMMARY
Studies were performed to evaluate the efficacy of PHMB treated Covidien AMD antimicrobial dressings against Methicillin Resistant Staphylococcus aureus (MRSA), and also against Vancomycin Resistant Enterococcus faecalis (VRE), in preventing microbial growth on the dressings. Kerlix™ AMD, Curity™ AMD and Excilon™ AMD dressings containing 0.2% polyhexamethylene biguanide (PHMB) were directly inoculated with clinical isolates of MRSA or VRE and placed on growth mediums. The presence or absence of microbial growth was observed visually and under a Scanning Electron Microscope (SEM) for three days. All Covidien AMD antimicrobial dressings significantly inhibited growth of MRSA and VRE on and within dressings, as compared to untreated control dressings.

INTRODUCTION
Covidien AMD antimicrobial dressings contain 0.2% PHMB as a broad-spectrum antimicrobial agent[1]. Kerlix™ AMD and Curity™ AMD dressings are cotton-based gauze dressings. Excilon™ AMD dressings are rayon/polyester based drain sponge dressings. The PHMB in Covidien AMD antimicrobial dressings functions as an agent that reduces bacterial colonization within the dressing and bacterial penetration through the dressing.

The effectiveness of Kerlix AMD dressings as a barrier to bacterial penetration has been demonstrated in animal models as well as in a human clinical case series[2-3]. Kerlix AMD dressings may be beneficial in reducing the bacterial bioburden in terms of both the total amount of microorganisms and the number of species[4]. In one prospective, randomized controlled open-label clinical case series, it was determined that Excilon AMD drain sponge dressings could be an important adjunct in the control of antibiotic-resistant bacterial infection as well as other bacteria or microorganisms frequently found in patients with tracheostomies. The study results suggested that Excilon AMD dressings can help control organisms such as MRSA and P. aeruginosa in an institutional setting[5].

Broad-spectrum activity of Covidien AMD antimicrobial dressings against gram positive and gram negative bacteria as well as fungi has been demonstrated in several in vitro studies[6-10]. In one study, Kerlix AMD dressings visually exhibited a very high degree of antimicrobial efficacy and reduced growth of MRSA and VRE at 24 and 48 hours following direct inoculation on the dressing at 105 cfu/mL challenge level[8, 9]. In another study, Kerlix Covidien AMD antimicrobial dressings exhibited high antimicrobial activity by 3-6 log reduction of MRSA challenge and 4-5 log reduction of VRE challenge at 30 minutes and 2 hours post inoculation of the dressing[10].

The purpose of this paper is to illustrate efficacy of three types of Covidien AMD antimicrobial dressings against clinical isolates of MRSA and VRE in preventing microbial growth on and within the dressings. The test dressings were directly inoculated with a suspension of MRSA or VRE and observed visually and under SEM for the growth/no growth on the dressings.

MATERIALS

<table>
<thead>
<tr>
<th>Test Articles</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerlix AMD, Lot# 51172700</td>
<td>Kerlix, Lot# 51532606</td>
</tr>
<tr>
<td>Curity AMD, Lot# 51056501</td>
<td>Curity, Lot# 51337800</td>
</tr>
<tr>
<td>Excilon AMD, Lot# 51448601</td>
<td>Excilon, Lot# 50977500</td>
</tr>
</tbody>
</table>

Challenge Organisms
The methicillin-resistant Staphylococcus aureus (MRSA) strain used in this study was obtained from Dr. Mark Shirtliff, Dept. of Microbiology and Immunology, School of Medicine, University of Maryland-Baltimore. It was originally isolated from a bone debridement sample from a patient undergoing treatment for osteomyelitis at the University of Texas Medical Branch.
MRSA-inoculated dressings at 24 hours
2,000 x magnification
Kerlix AMD Antimicrobial
Curity AMD Antimicrobial
Excilon AMD Antimicrobial

MRSA-inoculated dressings at 72 hours
2,000 x magnification
Kerlix AMD Antimicrobial
Curity AMD Antimicrobial
Excilon AMD Antimicrobial

VRE-inoculated dressings at 24 hours
2,000 x magnification
Kerlix AMD Antimicrobial
Curity AMD Antimicrobial
Excilon AMD Antimicrobial

VRE-inoculated dressings at 72 hours
2,000 x magnification
Kerlix AMD Antimicrobial
Curity AMD Antimicrobial
Excilon AMD Antimicrobial

Enlarged for clarity
The Vancomycin-resistant Enterococcus (VRE) faecalis strain used in this study was obtained from the American Type Culture Collection (ATCC 700802). This strain was originally isolated from a human blood sample.

METHODS

Inoculation and Bacterial Growth

MRSA and VRE cultures were each grown in Tryptic Soy Broth (TSB) at 37°C for 24 h. They were then diluted 1:10 with fresh TSB prior to inoculation of the dressing samples. The approximate cell density of the MRSA culture was 1 X 10^7 cfu/mL. The approximate cell density of the VRE culture was 6 X 10^6 cfu/mL.

The dressing samples were first cut into 20mm, 1-ply squares and then inoculated by holding them with sterile forceps and dipping into the diluted cultures. After inoculation, the dressings were immediately placed onto Trypticase Soy Agar (TSA) plates, and incubated at 37°C. They were transferred to fresh TSA every 24 hours.

Scanning Electron Microscopy

After 2 days incubation, the dressing samples were removed from the TSA plates and placed in a sterile Petri dish. Each dressing was treated with one mL of 50% ethanol for 10 minutes, after which the ethanol was decanted. This procedure was repeated with 70% and 100% ethanol to dehydrate the samples for SEM. Following dehydration, the samples were sputter coated with 10 nm layer of gold-palladium and imaged on a JEOL model 6100 Scanning Electron Microscope, which uses a LaB6 electron source. The acceleration voltage was set to 10kV with a working distance of 8mm.

RESULTS

Efficacy of Covidien AMD antimicrobial dressings

Antimicrobial efficacy of Kerlix AMD, Curity AMD, and Excilon AMD dressings against MRSA and VRE is illustrated in the following SEM pictures at 2,000 times magnification levels (enlarged 200% in this literature). These images were collected after 24 hours and again at 72 hours. It can be observed that Covidien AMD antimicrobial dressings significantly inhibited growth of MRSA and VRE on and within the dressings, compared to untreated Kerlix, Curity and Excilon dressings.

DISCUSSION

The studies reported in this paper involved direct inoculation of the test materials in which results are reported on a visual scale. The presence or absence of activity is a good indication of the efficacy of a test sample. All Covidien AMD antimicrobial dressings exhibited excellent ability to inhibit growth on and within the dressing compared to control dressings. The significance of these observations is that the contaminated traditional wound dressings could provide support for microbes to grow unchallenged and might lead to increase in bioburden in the wound. However, the use of antimicrobial dressings could prevent or reduce growth of the microbes that contact the dressings via exogenous contamination or absorption of wound exudates.

CONCLUSION

PHMB treated Covidien AMD antimicrobial dressings (i.e. Kerlix AMD, Curity AMD and Excilon AMD) exhibit antimicrobial activity against MRSA and VRE in terms of resisting bacterial colonization within the dressing and inhibit bacterial penetration through the dressing for up to 72 hours.

REFERENCES

1. Intrinsic activity of Cosmocil CQ — Technical brief on PHMB, Avecia Biocides Inc.
2. Patricia Mertz et al., “The Effect of an Antimicrobial Gauze Dressing Impregnated with 0.2% Polyhexamethylene Biguanide (PHMB) as a Barrier to prevent Pseudomonas aeruginosa Wound Invasion”, 9-01.
4. Glenda J. Motta, RN et al., “Impact of an Antimicrobial Gauze upon Bacterial Colonies In Wounds that Require Packing”, 5-03.
5. Glenda J Motta, RN and Donna Trigilia, APRN, “Impact of an Antimicrobial Drain Sponge Dressing Upon Specific Bacterial Isolates at Trachestomy Sits”, 5-03.
7. THC Technical studies-data on file